MEDIDAS
Al observar nuestro entorno vemos que existen diferencias y en otros casos semejanzas entre los cuerpos. Ellos poseen diferentes propiedades que permiten reconocerlos, compararlos y diferenciarlos. Para expresar cuantitativamente los diferentes grados en que se manifiesta una propiedad se utiliza el término magnitud.
Magnitudes: Son ciertas propiedades de un objeto o sistema que pueden ser expresadas mediante un valor numérico y su correspondiente unidad.
Son ejemplos de magnitudes: la longitud, el tiempo, la masa, el volumen y la temperatura, entre otras.
Para describir los objetos necesitamos realizar mediciones de las magnitudes que lo caracterizan.
¿Qué es medir? ¿En qué consiste el proceso de medición?
Medir es una acción que se realiza para obtener un número denominado MEDIDA. Una medida es la relación entre la cantidad desconocida (la que se debe determinar) y una cantidad conocida de la misma magnitud que se elige como unidad.
Ejemplo:
Si tratamos de medir la longitud de una mesa (magnitud), deberemos primero elegir una unidad de medida y ver después cuántas veces esa unidad está contenida en la magnitud a medir.
Para expresar correctamente una medida debemos indicar, además del número, la unidad que se ha empleado en la medición.
¿Es correcto utilizar lapiceras como unidad de medida?
Formalmente sí; se comparó la longitud del largo de la mesa con la longitud de la lapicera. El problema aparecerá cuando se quiera comunicar a otra persona la longitud del largo de la mesa. Seguramente la lapicera de esa otra persona será distinta a la de la que realizó la medida inicialmente.
Si se hubiese utilizado un instrumento adecuado, por ejemplo una regla milimetrada, no habría problemas para comprender la información obtenida.
Existen unidades de medida, como en este caso el milímetro, que luego de muchos años de tratativas y acuerdos internacionales son aceptadas mundialmente. El 7 de abril de 1795 el gobierno francés aprobó la instauración del Sistema Métrico Decimal, que en 1875 fue ratificado por varios países, convirtiéndose en un sistema de alcance internacional.
SISTEMA INTERNACIONAL DE UNIDADES
En la 14º Conferencia General de Pesas y Medidas (año 1960), con el acuerdo de 36 países se adoptó el llamado Sistema Internacional de Unidades que se abrevia S.I. y que nuestro país ratifica en todos sus términos. En él se establecen y definen una serie de unidades fundamentales y otras suplementarias y derivadas.
En el siguiente cuadro se detallan cuáles son las magnitudes básicas y sus unidades.
Si bien el Sistema Internacional de Unidades es de uso generalizado en el mundo, aún hoy es común que se sigan utilizando otras unidades que no pertenecen a este sistema, por ejemplo, pulgadas, millas, nudos y libras.
¿EXISTE LA MEDIDA EXACTA?
Un profesor realizó la siguiente actividad en la clase: solicitó a ocho estudiantes que midieran la longitud de un lápiz utilizando cada uno su regla y anotaran la medida obtenida.
Luego de realizadas las ocho mediciones preguntó los valores registrados y los escribió en el pizarrón. Para sorpresa de muchos estudiantes, se observó que no todas las medidas eran iguales, aunque correspondían al mismo lápiz.
¿A qué podemos atribuir estas pequeñas diferencias?
1) A las características de los instrumentos utilizados
Quizás no todas las reglas eran exactamente iguales o sus escalas estaban divididas en forma diferente. Generalmente las reglas de uso escolar están divididas en milímetros, pero las marcas en sus escalas dependen mucho de la calidad de la regla.
2) A la técnica utilizada por los alumnos para medir
Seguramente no todos hicieron coincidir exactamente la posición del cero de la regla con uno de los extremos del lápiz o el otro extremo quedaba entre dos divisiones. En este caso algún alumno pudo suponer que correspondía a la mitad del intervalo, otros a un poco más o a un poco menos. Incluso no debemos descartar la mayor o menor capacidad visual de los alumnos que midieron
Las medidas nunca son “exactas”, siempre están afectadas por un pequeño margen de incertidumbre o error. Esto se debe principalmente a dos factores: uno relacionado con el instrumento y otro con la persona que realiza la medición.
A la incertidumbre de una medida algunas veces se le denomina error. Pero esto no significa que esté mal realizada, simplemente indica que tiene un cierto margen de variación
INSTRUMENTOS
Estudiaremos dos características importantes de un instrumento de medición: el alcance y la apreciación
Alcance: Es la mayor medida que se puede realizar con un instrumento
Apreciación: Es la menor variación de la medida que se puede registrar con un instrumento
Por ejemplo el alcance del velocímetro de la figura es 220 km/h porque es la máxima velocidad que puede medir.
La apreciación es 10 km/h, podemos ver que la numeración está colocada cada 20 km/h, pero debo mirar las subdivisiones marcadas
Ejemplo:
La apreciación de la probeta es 10 mL y su alcance es 100 mL
La regla tiene un alcance de 10 cm y una apreciación de 0,2 cm.
ESTIMACIÓN DE MEDIDA
La estimación tiene relación con el instrumento utilizado pero depende en mayor parte de la persona que realiza la medición
La estimación es un proceso que realiza el observador, donde éste evalúa qué fracción de la apreciación del instrumento le corresponde una medida.
En la figura se representa la posición de una regla y un lápiz cuando se intenta medir su longitud.
La apreciación de la regla es 1 cm, porque éste es el valor entre dos divisiones consecutivas de la escala.
¿Cuál es la longitud del lápiz?
Podemos observar que la punta del lápiz no coincide exactamente con ninguna marca de la regla. Podemos afirmar con seguridad que la longitud del lápiz es mayor que 7 cm y menor que 8 cm.
Ahora es el momento en que la persona que realiza la medida debe estimar “a ojo” cuál es la fracción de centímetro que corresponde agregar a los 7 cm seguros.
En este caso podríamos decir que está en la mitad del intervalo entre 7 cm y 8 cm y por lo tanto la medida sería 7,5 cm. Quizás tú puedas ver mejor y estimar que es algo menos de la mitad de ese intervalo y que la medida del lápiz es 7,4 cm. Es así que cada observador puede estimar valores diferentes, dependiendo de la experiencia en el uso del instrumento y de su vista.
¿Cómo se expresa la incertidumbre de una medida?
Luego de realizar la estimación, que en este ejemplo es de medio centímetro (0,5 cm), supusimos que la medida más probable de la longitud del lápiz es 7,5 cm. Pero quizás sea un poco más o un poco menos y para expresar esto se escribe de la siguiente forma:
Esto significa que el valor del largo del lápiz, se encuentra entre un valor mínimo de 7,0 cm, calculado restando la incertidumbre (7,5 – 0,5) cm y un valor máximo de 8,0 cm, calculado sumando la incertidumbre (7,5 + 0,5) cm.
CIFRAS SIGNIFICATIVAS |
La figura representa una sección (parte) de un termómetro.
La apreciación del termómetro es de 0,4 °C
¿Qué estimación es posible
realizar?
Cuando los
intervalos entre dos marcas consecutivas de una escala son pequeños,
difícilmente se pueda estimar una fracción más pequeña que la mitad de la
apreciación. Por eso en este ejemplo la estimación de la medida es:
¿Cuál es el valor de la
temperatura que se lee en la escala del termómetro?
Estamos en condiciones
de afirmar que el valor de temperatura que marca el termómetro es mayor que
22,4 °C y menor que 22,8 °C. Estimando que la altura de la columna está en
medio de estos dos valores, el valor de la temperatura es T=22,6 °C
Como ocurre con todas
las medidas, el valor obtenido está afectado de incertidumbre, que en este caso
tomaremos igual a la estimación de la medida (0,2 °C). Finalmente, el valor de
la temperatura se registra como:
T= 22,6 °C + 0,2 °C o T= ( 22,6 + 0,2)
°C
Esta expresión indica que el
valor más probable de temperatura es 22,6 °C, pudiendo ser un poco más o un
poco menos, pero se encuentra limitada entre dos valores 22,4 °C y 22,8
°C.
El valor 22,6 °C tiene tres
cifras (dos 2 y un 6), de las cuales la última cifra (el 6) no es segura porque
está afectada por la incertidumbre. Sin embargo las otras cifras (los dos 2)
son seguras.
Las cifras significativas de una medida son todas las cifras seguras y una insegura (la primera insegura). Siempre que realices una medida debes expresarla con cifras significativas.
¿El “0” es una cifra significativa?
Para contestar debo distinguir
tres situaciones:
a) Los
ceros que se utilizan para indicar el lugar decimal, hasta la primera cifra
distinta de cero, no son cifras significativas. Por ejemplo la medida 0,0053Kg
tiene 2 cifras significativas, el 5 y el 3.
b) Los
ceros que quedan entre dos cifras diferentes de cero, son cifras
significativas. Por ejemplo, en la medida 203,6cm hay cuatro cifras
significativas.
c) Los
ceros finales siempre son cifras significativas. Por ejemplo la medida 2,300m
tiene 4 cifras significativas.
Recuerda que al expresar una medida debes anotar todas las
cifras seguras y la primera insegura, que corresponde al último dígito de la
medida. Además debes indicar la incertidumbre que solo afecta a a este último
dígito.
Ejemplo:
¿Qué diferencia
hay entre las medidas 14cm y 14,0cm?
Matemáticamente
podemos afirmar que los valores son iguales. Sin embargo, estos números tienen
a su derecha una unidad, por lo tanto representan medidas.
La medida 14cm
tiene dos cifras significativas, de las cuales el 1 es segura y el 4 por ser la
última es insegura, o sea la incertidumbre de esta medida está en las unidades,
en este caso centímetros.
En cambio en
14,0cm la cifra insegura es el 0 que corresponde a las décimas de centímetros,
determinando que la incertidumbre sea menor que en la medida anterior.
OPERACIONES CON CIFRAS
SIGNIFICATIVAS
Habitualmente
luego de registrar medidas es necesario operar con ellas. El resultado de la
operación deberá expresarse con cifras significativas.
Existen ciertas
reglas básicas a tener en cuenta para expresar el resultado correctamente.
SUMA Y RESTA
Supongamos que
se deben sumar dos longitudes cuyos valores son 2,34m y 1,5m.
·
2,34m:
la cifra insegura es el 4 por ser la última, al estar ubicado dos lugares
después de la coma, corresponde a las centésimas. Una forma aceptada de indicar
la cifra insegura es colocando una rayita arriba de ella: 2,34m
·
1,5m: la última
cifra es 5 por lo tanto es la cifra insegura ubicada en las décimas y lo
indicamos 1,5m.
Como el valor
final debe ser expresado con cifras significativas, solo puede tener una cifra
insegura. Lo que se hace entonces es redondear hasta que quede una sola cifra
insegura, que en este caso es el 8 y se elimina el 4. El resultado redondeado
queda 3,8m.
Podemos
observar que el resultado (3,8cm) tiene un solo lugar después de la coma, al
igual que 1,5cm que es el sumando con menos lugares decimales.
Ejemplo de
redondeo:
Si
queremos redondear el número 4,583 para expresarlo con dos cifras
significativas se debe tener en cuenta el valor de la primera cifra eliminada,
en este caso el 8.
Si esta cifra es
mayor o igual a 5 aumentamos en una unidad el dígito anterior y queda 4,6.
Si la primera cifra a eliminar fuera
menor que 5 no se aumentaría una unidad. Por ejemplo si 3,627 se desea expresar
con dos cifras, se elimina a partir del 2 pero no aumenta una unidad el dígito
anterior; queda entonces 3,6
El
resultado de sumar o restar dos valores debe tener el mismo número de cifras
decimales (lugares después de la coma) que el término que tenga menos.
MULTIPLICACIÓN Y DIVISIÓN
Cuando es
necesario multiplicar o dividir dos medidas, la regla que se aplica es
diferente a la usada para sumar y restar.
El
resultado de una multiplicación o división tendrá tantas cifras significativas
como el factor que tenga menos cifras significativas.
VOLUMEN
¿Cómo realizar la medida?
1) Elegir un recipiente lo suficientemente grande como para que quepa todo el líquido.
2) Observar la apreciación del instrumento y la unidad.
3) El instrumento debe estar en el momento de registrar la medida debe estar apoyado sobre una superficie lisa y horizontal.
4) Para que la medida sea lo más correcta posible la vista del operador debe estar a la altura del nivel del líquido.
5) Dar el resultado con la unidad correspondiente.
6) Si observamos el nivel superior del líquido, observamos que no es totalmente horizontal, sino que forma una curva, a la cual se le denomina “menisco” (del griego mênisko, significa "media luna") el cual puede ser cóncavo o convexo.
En muchos envases se indica cuánto producto contienen expresado en gramos o kilogramos. En este caso la información que se está brindando es la masa del contenido del recipiente.
Observa los envases de las figuras y escribe en tu cuaderno la masa de cada uno con sus correspondientes unidades. Para los envases en los que la masa se encuentre expresada en kilogramos, exprésala en gramos; y los que se encuentren en gramos exprésalos en kilogramos.
MASA




¿Qué es la masa?
![]() |
| Masa para unas ricas tortas fritas |

![]() |
| Masa de gente |
![]() |
| Medición de una masa |
El concepto de masa
es utilizado
tanto en la física, como en las ciencias humanas e incluso para la
cocina. En el ámbito
de la ciencia hablamos de masa para referirnos a la
cantidad de materia que se encuentra en un determinado cuerpo.
La unidad de masa en el Sistema Internacional de Unidades es el Kilogramo, cuya notación es “Kg"
Esta unidad fue definida en principio como la masa de 1 dm3 (1 litro) de agua.
En 1889 se consideró más práctico y exacto construir y utilizar como unidad de referencia un “Kilogramo patrón” que hoy se guarda en la Oficina Internacional de Pesas y Medidas en la ciudad de París.

La balanza también se ha utilizado desde la antigüedad como símbolo de la justicia. En la imagen pueden ver a Themis, diosa griega de la justicia.

DISTINTAS BALANZAS
![]() |
| Balanza monoplato |
![]() |
| Balanza de cocina |
![]() |
| Balanza electrónica comercial |
![]() |
| Balanza electrónica de laboratorio |
En tu liceo seguramente encontrarás una balanza monoplato, por esto explicaremos su funcionamiento.
¿Cómo
usar una balanza monoplato?
-Asegúrate que la balanza este
sobre una superficie plana y nivelada
-Coloca todas las masas o caballetes
en cero.
-Asegúrate de conocer la
apreciación de la misma.
-Nivela el puntero con la escala,
usando el tornillo de ajuste.
-Coloca el objeto que quieres medir
sobre el platillo.
-Mueve los caballetes comenzando con
el de mayor masa.
-Continúa con los demás hasta que el puntero este nivelado en la escala. (Si está por debajo del nivel es que has colocado un valor de masa mayor, debes cambiarlo por uno de menor valor hasta lograr nivelar)
-Continúa con los demás hasta que el puntero este nivelado en la escala. (Si está por debajo del nivel es que has colocado un valor de masa mayor, debes cambiarlo por uno de menor valor hasta lograr nivelar)
-Suma las lecturas de los brazos en
la balanza.
En la siguiente dirección encontrarás una imagen con las partes de la balanza monoplato.
https://www.genial.ly/58d70397753f1559dc8e3952/partes-de-la-balanza-monoplato
En la siguiente dirección encontrarás una imagen con las partes de la balanza monoplato.
https://www.genial.ly/58d70397753f1559dc8e3952/partes-de-la-balanza-monoplato
Actividad:
1) Ingresa a la siguiente dirección web:
http://www.educaplus.org/game/balanza-monoplato
Según lo explicado acerca del funcionamiento de la balanza monoplato, determina la masa de cada uno de los matraces identificándolos con su color. Confecciona una tabla indicando color del matraz y masa del mismo. Expresa la masa del matraz en gramos (g) y kilogramos (Kg).
}

2) Actividad práctica:
Con la balanza monoplato del laboratorio de tu liceo determina la masa de distintos objetos que se te proporcionarán.
3)Confecciona una tabla con todas las masas determinadas, expresa las mismas en Kg, g y mg.
¿Es
importante medir la masa?
El ingeniero debe conocer la masa del auto
para diseñar el sistema de frenos.
Cuanto mayor es la masa del vehículo más
difícil es lograr que cambie su velocidad.
El
médico receta a su paciente una dosis de 250 mg de antibiótico cada 8 horas. El
químico determina la cantidad de antibiótico que contiene una dosis midiendo su
masa.
Podríamos encontrar muchos ejemplos como
este, en los que conocer la masa de un cuerpo es verdaderamente esencial.
MASA Y PESO
En el lenguaje cotidiano se
suele utilizar el término peso en lugar de masa. Cuando habitualmente se dice
que utilizamos una balanza para pesar un cuerpo, es decir medir su peso, en
realidad es su masa lo que se determina.
La
masa de un cuerpo es una propiedad característica del mismo, que está
relacionada con el número y clase de las partículas que lo forman. Se mide en
kilogramos (kg). Para determinarla se utiliza una balanza.
El
peso de un cuerpo es la fuerza de atracción que ejerce la Tierra (o el astro en
el que se encuentre) sobre él.Depende de la masa del mismo, un cuerpo de masa
el doble que otro, pesa también el doble. Se mide en Newtons (N).
Para determinar el peso de un cuerpo se utiliza un
instrumento qu sirve para medir fuerzas, llamado dinamómetro.
No confundamos masa con peso,
estos astronautas no pesan nada en gravedad cero, pero siguen teniendo masa
(kg). El peso es la fuerza con que los cuerpos caen debido a la gravedad, no
pesamos lo mismo en la Tierra que en otros planetas.
En la figura observas un hombre levantando una piedra. La masa de la piedra es 10 Kg tanto en la
Tierra como en la Luna, la masa de la piedra es propia de ella, y no depende
del lugar dónde se la mida. En cambio el Peso, qué es la fuerza de atracción de
los astros sobre un cuerpo, depende del astro en que se encuentre. Si el cuerpo
está en el espacio, lejos de cualquier astro, esta fuerza es casi nula (el
cuerpo no tiene peso). Sin embargo la masa de ese cuerpo no varía porque está
formado por la misma cantidad de materia en un lugar y en el otro.
Tareas:
Aplicando los conceptos trabajados indica si las siguientes
afirmaciones son verdaderas o falsas. Justifica tu respuesta. (Justificar
implica decir el motivo de tu elección)
1) Tu peso en la tierra es igual a tu peso en la luna.
2) Tu masa en la tierra es igual que en la luna.
3) Tu masa es diferente a tu peso.
4) Tu masa se mide con un dinamómetro.
5) La masa y el peso se miden con diferentes instrumentos.
6) La frase “adelgacé 2kg” se refiere al peso corporal.
7) La frase “me cuesta levantar mi bicicleta porque está
pesada” se refiere al peso de la bicicleta.
Completa la siguiente tabla:
Magnitud
|
Masa
|
Peso
|
Instrumento de medida
|
||
Unidad de medida
|
||
Definición
|
||
Otras características
|
Observa el siguiente vídeo explicativo acerca de las diferencias entre masa y peso

Imagina que tienes dos cubos de un centímetro cúbico cada uno, uno es de aluminio y el otro es de hierro.
Se comparan en una balanza la masa de los mismos, la masa del cubo de hierro es de 7,86 g y la masa del cubo de aluminio es de 2,70 g.
¿Cuál es la densidad de cada cubo?
¿Qué significa que un cubo es más denso que otro?
Ejercicios:
CONSERVACIÓN DE LA MASA
Cuando estudiamos un fenómeno
luminoso, el crecimiento de una planta, o la transformación de
un renacuajo, solo ponemos atención a lo que nos
interesa. Dada la enorme cantidad de fenómenos que ocurren en
el Universo, resultaría imposible estudiarlos y
analizarlos todos a la vez. Por eso siempre elegimos la porción
que queremos estudiar y la separamos del resto del mundo físico
que la rodea. A esta porción la denominamos
sistema.
Generalmente es útil dividir el espacio en dos
regiones que llamaremos: sistema y ambiente.
El Sistema
es la porción de espacio que separamos de su entorno, para
facilitar su estudio.
El Ambiente
es todo lo que rodea al sistema y puede interactuar con él.
Los
sistemas podemos clasificarlos según muchos criterios. En este caso
solo analizaremos el posible intercambio de materia entre el sistema
y el ambiente. Según este criterio definimos tres tipos de sistemas
abierto y cerrado.
Sistema Abierto
Estos sistemas son abiertos porque intercambian materia y energía con el ambiente.
Intercambio de materia
El gas del refresco sale al exterior, el vapor de agua sale de la olla, puede caer polvo dentro de los recipientes.
Intercambio de energía
El agua de la olla eleva su temperatura debido a que recibe energía en forma de calor a través de la hornalla.
El refresco eleva su temperatura porque recibe energía en forma de calor desde el ambiente.
Sistema Cerrado
Sistemas cerrados son aquellos que no intercambian materia pero si energía con el ambiente.
Intercambio de materia
Suponiendo que los recipientes están cerrados herméticamente no entra, ni sale nada de dentro o fuera de ellos.
Intercambio de energía
Como las paredes de los recipientes lo permiten, éstos pueden recibir o perder energía en forma de calor.
Sistema Aislado
Sistemas aislados son aquellos que no intercambian ni materia ni energía con el ambiente.
LAS TRANSFORMACIONES QUE OCURREN
A nuestro
alrededor observamos que siempre ocurren cambios. Estamos tan
acostumbrados a verlos que muchas veces no les ponemos suficiente
atención. Por ejemplo, observamos que la sal se disuelve en el agua,
algunas sustancias entran en combustión, el azúcar se transforma
en caramelo cuando la calentamos. Pero cuando transcurren estos
cambios, ¿qué sucede con la masa? Aumenta, disminuye, no
cambia........ ¿Cuál será la respuesta correcta? Intentaremos
averiguarlo realizando algunos experimentos.
Para
estar seguros de que los resultados se deberán al proceso en sí
mismo y no a la influencia del medio exterior es necesario estudiar
los fenómenos en un sistema
cerrado
Para que
tus conclusiones sean mas seguras será necesario repetir los
experimentos varias veces.
Experimento
1: Agua sólida y líquida
Objetivo
Estudiar
qué sucede con la masa de hielo (agua sólida) cuando se transforma
en agua líquida.
Materiales
- hielo
- recipiente con tapa
- balanza
Procedimiento
- Coloca hielo en un recipiente y tápalo.
- Mide la masa inicial (minicial) del sistema
- Agita y frota el recipiente hasta que no observes más cambios en el sistema. Anota las observacione.
- Mide nuevamente la masa del sistema (mfinal).
- Calcula la variación de masa (Δm) del sistema.Δm= mfinal- minicial
Δ
es la letra delta del alfabeto griego que se utiliza en ciencias para
simbolizar la variación de una magnitud
Conclusión:
(Para
completar en clase)
Experimento
N°2: Agua y sal
Objetivo
Estudiar
qué sucede con la masa de un sistema al mezclar agua y sal
Materiales
- sal de mesa
- agua
- recipiente con tapa
- balanza
Procedimiento
- Coloca agua en un recipiente y una cucharadita de sal en la tapa.
- Mide la masa del sistema (el recipiente junto con la tapa) (minicial)
- Vierte la sal en el agua, tapa bien el recipiente y agita. Observa registra.
- Mide la masa del sistema nuevamente (mfinal).
- Calcula la variación de masa del sistema.
Δm=
mfinal- minicial
Conclusión
(Para
completar e clase)
Experimento
N°3: Agua y sales efervescentes
Objetivo
Estudiar
qué sucede con la masa de un sistema cerrado al mezclar agua y sales
efervescentes.
Materiales
- recipiente conteniendo agua
- un gobo
- un sobre con sales digestivas efervescentes (Uvasal o similar)
Procedimiento
- Coloca parte del contenido del sobre dentro del globo.
- Tapa la boca del recipiente con el globo, pero sin que caiga el sólido en el agua
- Determina la masa inicial del sistema (minicial).
- Levanta el globo dejando caer su contenido en el agua.
- Cuando consideres que ha finalizado la transformación, determina nuevamente la masa del sistema (mfinal)
- Calcula la variación de masa: Δm= mfinal- minicial
Conclusión:
(Para
completar en clase)
ANALICEMOS UN POCO MÁS LOS CAMBIOS OBSERVADOS
Teniendo en cuenta los cambios ocurridos, es posible clasificar los experimentos que realizaste, en dos grupos.
En los dos primeros, fusión el hielo y disolución de sal en agua, las transformaciones ocurridas no cambiaron las sustancias.
El hielo cambio de estado, pero la sustancia es la misma. ( Agua sólida →fusión → Agua líquida)
La sal podemos tenerla disuelta o separada de ella, pero igualmente tendremos sal y agua)
En casos como estos, decimos que ha ocurrido una transformación o un cambio físico.
Una transformación física, es cualquier proceso en el cual las sustancias iniciales y finales son las mismas.
Estado
inicial:Agua sólida Estado
final:Agua líquida
En
el tercer experimento, el comprimido efervescente y el agua
reaccionaron formando un gas.
Este
gas es una sustancia diferente a las iniciales. En
este sistema ha ocurrido un cambio químico.
Una
transformación química, es un proceso en el cual las sustancias
iniciales y finales son diferentes.
Inicial
Final
sales
digestivas y agua mezcla de
sólido y líquido + formación de gas
Puedes
observar facilmente otra transformación química, cuando se quema
azúcar. Los productos que se obtienen son diferentes.
LEY DE LA CONSERVACIÓN DE LA MASA
En
los tres experimentos anteriores han ocurrido transformaciones
físicas y químicas, pero el resultado con respecto a la masa fue el
mismo. La masa no cambia cuando el cuerpo cambia de estado y tampoco
cambia cuando se produce dentro del sistema cerrado una reacción
química como en el caso de la disolución del comprimido
efervescente. Dentro de los posibles errores experimentales, has
podido deducir a través de tus trabajos que la masa se conserva
cuando se trabaja en un sistema cerrado.
Las
conclusiones de estos experimentos son similares a los resultados
experimentales que llevaron al científico francés Antoine Lavoisier
en la segunda mitad del siglo XVIII a enunciar la llamada Ley de
Conservación de la Masa o Ley de Lavoisier.
Ley
de la Conservación de la Masa
La
masa de un sistema cerrado es constante, no varía ( Δm=0),
aunque en el sistema se produzcan cambios físicos o químicos
Considerando
esta ley se puede deducir que es imposible crear materia y tampoco es
posible el proceso inverso, es decir destruirla. Sí es posible
transformar determinados materiales en otros y si el sistema es
cerrado también es posible comprobar que la masa no varía,
permanece constante.
De
la siguiente frase extraída de una publicación de Lavoisier podemos
interpretar su idea respecto a la conservación de la masa:
“Nada
se crea, nada se destruye, todo se transforma”
DENSIDAD
¿Es posible
identificar la materia conociendo el valor de la masa?
¿Es posible
identificar la materia conociendo su volumen?
PROPIEDADES DE LA
MATERIA
Son
aquellas que permiten distinguir la materia, algunas pueden son
medibles y otras no.
Propiedades
Extensivas:
Son
aquellas cuyo valor depende de la cantidad de materia del sistema.
Ej.: Masa, voumen,longitud
Propiedades
Intensivas:
Son
aquellas cuyo valor no depende de la cantidad de materia del sistema.
Ej.: temperatura, densidad, punto de ebullición.
Las
propiedades intensivas se pueden subdividir en dos categorías:
generales y características
Propiedades
Generales:
No
permiten identificar sustancias. Ej.: Temperatura
Propiedades
Características:
Permiten
identificar sustancias. Ej.: Densidad, punto de ebullición.
DENSIDAD:
Es
una magnitud que expresa la masa de una unidad de volumen.
Es
el cociente entre la masa de un cuerpo y el volumen que
éste
ocupa.
¿Qué
tipo de propiedad es esta nueva magnitud?
____________________________________
Tabla de densidades de algunas sustancias
- SustanciaDensidad (g/cm3)Agua líquida1,00Alcohol etílico0,78Glicerina1,25Aluminio2,70Cobre8,90Plata10,50Oro19,30Mercurio13,60Plomo11,30Hierro7,86Platino21,45Diamante3,50

Imagina que tienes dos cubos de un centímetro cúbico cada uno, uno es de aluminio y el otro es de hierro.
Se comparan en una balanza la masa de los mismos, la masa del cubo de hierro es de 7,86 g y la masa del cubo de aluminio es de 2,70 g.
¿Cuál es la densidad de cada cubo?
¿Qué significa que un cubo es más denso que otro?
Ejercicios:
Con
la finalidad de calcular la densidad de un cuerpo sólido, se
determinó su masa obteniéndose un valor de 6,5 g. Se colocó luego
agua en una probeta graduada y se introdujo el cuerpo en ella (como
muestra la figura).
a)¿Cuál
es la apreciación de la probeta?
b)
Indica el volumen inicial y final.
c)¿Cuál
es el volumen del sólido?
d)
Determina la densidad del sólido.
Encuentras
dos piedras que tienen aspecto similar y determinas sus respectivas
masas y volúmenes.
¿Estarán formadas ambas piedras por el mismo
material? Fundamenta.
Masa (g)
|
Volumen (cm3)
|
|
Piedra 1
|
115,25
|
25,0
|
Piedra 2
|
182,00
|
35,0
|












































no lei nada lol
ResponderEliminarX2 pero bueno gracias
ResponderEliminarAsí que acá es donde mi profe de ciencias físicas saca todo
ResponderEliminarNo entendiendí nada qu ey que hacer ay profe
ResponderEliminar